
SCRIPT LANGUAGE
Like a cross between C and awk. Suck it and see. Variables are created
on the fly. Comments are introduced with #. break and continue are not
supported. Storage is allocated each time an expression is evaluated and
only freed when the script is complete, so you will run out of memory if
you loop a few thousand times.

BUILT-IN FUNCTIONS
int active(char *appName)
Returns 1 if appName is currently the active application, else 0.
"active" is used in the NeXTStep sense. Use running() to determine if
the app is alive.

int atoi(char *string)
See manual pages.

void flushEvents()
Flush collected events. Events generated by calls to postKeyEvent(),
postMouseEvent() etc are buffered and only actually played back when
flushEvents is called. A call to flushEvents is automatically made at
the end of a script.

char *getenv(char *name)
See manual pages.

char *getParameter()

CyberMan has a parameter window. This call returns it's contents.

int launch(char *appName)
Ask the Workspace manager to launch the application appName.

char *malloc(int size)
See manual pages. The space is automatically freed when the script
completes.

char *map(char *fileName)
Opens the file and maps it in. Returns a pointer to the mapped data.

int newWindow(char *appName)
This call, in conjunction with refreshWindowList can be used to get the
local window number of a new window which has been added to appName
since the last call to refreshWindowList. For example, if you call
refreshWindowList, then click Mail's send
button, newWindow("Mail") will return the window number of the Send
window.

void outputToWindow(char *buf)
CyberMan has an output window. This call displays the contents of buf in
that window. If buf appears to contain RTF, it will be displayed as
such.

char *pasteIn(int pasteBoard)
Returns a pointer to a buffer containing the contents of the given
pasteBoard. pasteBoard may either be USER_PB or SELECTION_PB. USER_PB
may be used if the script has been run as a service, in which case it

refers to the requesting application's pasteboard. SELECTION_PB refers
to the standard selection pasteboard. Only Ascii and Filename pasteboard
types are currently recognized.

void pasteOut(int pasteBoard, char *buf)
Copies buf to the specified pasteboard. See above for description of the
pasteboard types. If the script is run from a service and if a return
type has been specified in the options file in the script directory,
then USER_PB may be used to replace the contents of the original
selection.

int pipe(char *input, char *cmd)
Passes input through a pipe to the executable cmd. See the pipe manual
page for more details.

void postActivate(char *appName)
Posts an event to make the application the active app.

void postDeactivate(char *appName)
Posts an event to deactivate the given app.

void postKeyEvent(char *appName, int flags, char
*keyString)
Posts to appName a series of key down and key up events for the given
keyString. If flags is COMMAND, the key strokes will be generated as if
the Command key was held down. Note that events are not played until
flushEvents is called.

void postMouseEvent(char *appName, int event, int click,
int window,

int x, int y, int relativeTo)
int x, int y, int relativeTo)

Posts to appName the given mouse event. event may be one of:
NX_LMOUSEDOWN , NX_LMOUSEUP, NX_RMOUSEDOWN, NX_RMOUSEUP, NX_MOUSEMOVED,
NX_LMOUSEDRAGGED, NX_RMOUSEDRAGGED, NX_MOUSEENTERED, NX_MOUSEEXITED,
DRAG_WINDOW, SINGLE_CLICK, DOUBLE_CLICK or TRIPLE_CLICK. SINGLE_CLICK is
shorthand for two events, NX_LMOUSEDOWN followed by NX_LMOUSEUP, and
similarly for DOUBLE_CLICK and TRIPLE_CLICK. click is normally 1 for
mouse down and 0 for mouse up, unless it is part of a single, double or
triple click in which case both down and up clicks should have 1 for the
first pair, 2 for the second and so on. window specifies the local
window number of the application. This may be detemined using the
supplied modified version of Winfo. The negative window values
NX_KEYWINDOW (-1), NX_MAINWINDOW (-2) may also be used (see
appkit/NXJournaler.h). x and y are the coordinates of the mouse event
relative to one of the corners of the given window. Which corner is
specified by the value of relativeTo which may be TOP_LEFT, BOTTOM_LEFT,
TOP_RIGHT or TOP_LEFT. If a negative pseudo window number is given,
relativeTo must be BOTTOM_LEFT because CyberMan cannot determine the
window size. DRAG_WINDOW specifies a drag operation on the given window
in which case x and y are delta offsets from the current position.

void postponeEvent(int interval)
All events have a time stamp. This increments the time stamp by the
specified interval. The interval is in units of about 66 milliseconds.
The next event will consequently be delayed by the specified amount.

void printf(char *fmt, ...)
This call is for debugging purposes. It does a normal printf and outputs
to the console. A maximum of ten parameters may be supplied.

void refreshWindowList()
Updates CyberMan's list of processes and their window numbers. This

needs to be called in conjunction with newWindow and also may need to be
called if active and running are to work accurately.

int running(char *appName)
Returns 1 if the application is running, else 0. May be used with launch
if the app is not currently running.

void setEventInterval(int interval)
Events are seperated from each other by a small delta time interval. By
default, this is zero. The interval delta may be set using this call.

void sleep(int seconds)
Makes CyberMan sleep for the given number of seconds.

void sprintf(char *buf, char *fmt, ...)
See manual page. A maximum of ten parameters may be given.

int strlen(char *string)
See manual pages.

int system(char *cmd)
Execute the given command. See system manual page for more details.

int unhide(char *appName)
Unhides the given application. The only difference between this and
postActivate is that it happens immediately by sending a request to the
Workspace manager.

BUILT-IN IDENTIFIERS
int numProcs
The number of processes in procList.

char *procList[]
An array of character pointers containing the names of all the processes
that CyberMan knows about.

char *SCRIPT_DIR
Pathname of the directory from which this script was run.

